How to... Compute a Taylor polynomial

Given: \quad A degree $\mathrm{n} \in \mathbb{N}$, a (at least) \mathfrak{n}-times $(\mathrm{n}+1$ times if the error term is wanted) differentiable, real-valued function $f(x)$, and a point $x_{0} \in \mathbb{R}$.
Wanted: The taylor polynomial $T_{n, x_{0}}$ of degree n in the point x_{0} of f. Further, we are often interested in the error term and a bound for the error.

Example

We consider the function

$$
f(x)=e^{x^{2}}
$$

and want to compute the taylor polynomial of order $n=2$ in $x_{0}=0$. Further, we want to compute the error term and find a bound for the error for $x \in[-1,1]$.

1 Compute the derivatives

Compute the first n derivatives of the function f (including the zeroth derivatives, i.e. f itself) and compute the values of the derivatives at x_{0}. This can be done, e.g., in table form:

k	$f^{(k)}(x)$	$f^{k}\left(x_{0}\right)$
0	$f(x)$	$f\left(x_{0}\right)$
1	$f^{\prime}(x)$	$f^{\prime}\left(x_{0}\right)$
2	$f^{\prime \prime}(x)$	$f^{\prime \prime}\left(x_{0}\right)$
\vdots	\vdots	\vdots
n	$f^{(n)}(x)$	$f^{(n)}\left(x_{0}\right)$

The first n derivatives (and the $\mathrm{n}+1$-th derivative for the error term) are

k	$f^{(k)}(x)$	$f^{k}(0)$
0	$e^{x^{2}}$	$e^{0}=1$
1	$2 x e^{x^{2}}$	0
2	$2 e^{x^{2}}+4 x^{2} e^{x^{2}}$	2
3	$12 x e^{x^{2}}+8 x^{2} e^{x^{2}}$	-

The last row is needed for the error term only.

2 Set up the taylor polynomial

Compute the terms of the taylor polynomials as

$$
\frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}
$$

for $k=0,1, \ldots, n$. The values $f^{(k)}\left(x_{0}\right)$ were computed in the table in step 1 and $k!:=1 \cdot 2 \cdot 3 \cdots k$ is the factorial of k (with $0!=1$).
Then the sum of all these terms is the taylor polynomial in the variable x

$$
T_{n, x_{0}}(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}
$$

The taylor polynomial is

$$
\begin{aligned}
\mathrm{T}_{2,0}(x) & =\frac{1}{0!}(x-0)^{0}+\frac{0}{1!}(x-0)^{1}+\frac{2}{2!}(x-0)^{2} \\
& =1+0 x+1 x^{2}=x^{2}+1 .
\end{aligned}
$$

3 Compute the error term
Compute one additional (the $n+1$-th) derivative $f^{(n+1)}(x)$ of f. Then the error term is

$$
R_{n, x_{0}}(x, \xi)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

The error term depends on two variables! The χ-value where the error is evaluated and some ξ-value. There is no information on ξ other than that ξ lies between the x-value and the x_{0}-value.
Note: The error term satisfies $f(x)=T_{n, x_{0}}(x)+R_{n, x_{0}}(x, \xi)$ for some (unknown) ξ between x and x_{0} and for all x.

The $n+1$-th (in this case third) derivative in dependence of ξ is

$$
f^{\prime \prime \prime}(\xi)=12 \xi e^{\xi^{2}}+8 \xi^{2} e^{\xi^{2}}
$$

Thus, the error term is

$$
R_{3,0}(x, \xi)=\frac{12 \xi e^{\xi^{2}}+8 \xi^{2} e^{\xi^{2}}}{3!}(x-0)^{3}=\frac{12 \xi e^{\xi^{2}}+8 \xi^{2} e^{\xi^{2}}}{6} x^{3} .
$$

4 Find a bound for the error

Given some range for x, we can find a bound for the error term $R_{n, x_{0}}(x, \xi)$ by using the fact that ξ is from the same domain as x (as ξ is always in between x and x_{0}). By bounding the terms $f^{(n+1)}(\xi)$ and $\left(x-x_{0}\right)^{n+1}$, one may obtain a bound for the whole error term. This step highly depends on $f^{(n+1)}(\xi)$.

We want to find a bound for $R_{3,0}(x, \xi)$ and $x \in[-1,1]$, i.e. we want to find a constant C such that

$$
\left|\mathrm{R}_{3,0}(x, \xi)\right| \leq \mathrm{C} .
$$

Using the rules for the absolute value (in particular the triangle inequality $|\mathrm{a}+\mathrm{b}| \geq$ $|a|+|b|)$ and the fact, that $\xi \in[-1,1]$, we obtain

$$
\begin{aligned}
\left|R_{3,0}(x, \xi)\right| & =\left|\frac{12 \xi e^{\xi^{2}}+8 \xi^{2} e^{\xi^{2}}}{6} x^{3}\right| \\
& \leq \frac{12|\xi|\left|e^{\xi^{2}}\right|+8|\xi|^{2}\left|e^{\xi^{2}}\right|}{6}\left|x^{3}\right| \\
& \leq \frac{12 \cdot 1 \cdot e^{1}+8 \cdot 1 \cdot e^{1}}{6} \cdot 1 \\
& =\frac{10}{3} \underbrace{e^{1}}_{\leq 3} \leq 10 .
\end{aligned}
$$

Hence, the error when using $T_{2,0}$ instead of f for $x \in[-1,1]$ is at most 10 .

