How to... Compute a Taylor polynomial

 $\begin{array}{lll} \textit{Given:} & A \mbox{ degree } n \in \mathbb{N}, \mbox{ a (at least) } n\mbox{-times } (n+1 \mbox{ times if the error term is wanted}) \mbox{ differentiable, real-valued function } f(x), \mbox{ and a point } x_0 \in \mathbb{R}. \\ \hline \textit{Wanted:} & \mbox{ The taylor polynomial } T_{n,x_0} \mbox{ of degree } n \mbox{ in the point } x_0 \mbox{ of } f. \\ \hline \mbox{ Further, we are often interested in the error term and a bound for the error.} \end{array}$

Example

1

We consider the function

 $f(\mathbf{x}) = e^{\mathbf{x}^2}$

and want to compute the taylor polynomial of order n = 2 in $x_0 = 0$. Further, we want to compute the error term and find a bound for the error for $x \in [-1, 1]$.

Compute the derivatives

Compute the first n derivatives of the function f (including the zeroth derivatives, i.e. f itself) and compute the values of the derivatives at x_0 . This can be done, e.g., in table form:

k	$f^{(k)}(x)$	$f^k(x_0)$
0	$f(\mathbf{x})$	$f(x_0)$
1	f'(x)	$f'(x_0)$
2	f''(x)	$f''(x_0)$
÷	:	
n	$f^{(n)}(x)$	$f^{(n)}(x_0)$

The first n derivatives (and the n + 1-th derivative for the error term) are

k	$f^{(k)}(\mathbf{x})$	$f^k(0)$
0	e ^{x²}	$e^{0} = 1$
1	$2x e^{x^2}$	0
2	$2e^{x^2} + 4x^2 e^{x^2}$	2
3	$12x e^{x^2} + 8x^2 e^{x^2}$	-

The last row is needed for the error term only.

Set up the taylor polynomial

2

Compute the terms of the taylor polynomials as

$$\frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

for k = 0, 1, ..., n. The values $f^{(k)}(x_0)$ were computed in the table in step 1 and $k! := 1 \cdot 2 \cdot 3 \cdots k$ is the factorial of k (with 0! = 1).

Then the sum of all these terms is the taylor polynomial in the variable x

$$T_{n,x_0}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$$

The taylor polynomial is

$$T_{2,0}(x) = \frac{\frac{1}{0!}}{0!}(x-0)^0 + \frac{\frac{0}{1!}}{1!}(x-0)^1 + \frac{\frac{2}{2!}}{2!}(x-0)^2$$

= 1 + 0x + 1x² = x² + 1.

3 Compute the error term

Compute one additional (the n + 1-th) derivative $f^{(n+1)}(x)$ of f. Then the error term is

$$R_{n,x_0}(x,\xi) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

The error term depends on *two variables*! The x-value where the error is evaluated and some ξ -value. There is no information on ξ other than that ξ lies between the x-value and the x₀-value.

Note: The error term satisfies $f(x) = T_{n,x_0}(x) + R_{n,x_0}(x,\xi)$ for some (unknown) ξ between x and x_0 and for all x.

The n + 1-th (in this case third) derivative in dependence of ξ is

$$f'''(\xi) = 12\xi e^{\xi^2} + 8\xi^2 e^{\xi^2}.$$

Thus, the error term is

$$R_{3,0}(x,\xi) = \frac{12\xi e^{\xi^2} + 8\xi^2 e^{\xi^2}}{3!} (x-0)^3 = \frac{12\xi e^{\xi^2} + 8\xi^2 e^{\xi^2}}{6} x^3.$$

Philipp Warode \cdot Mathematics Preparatory Course 2019 \cdot HU Berlin

Find a bound for the error

4

Given some range for x, we can find a bound for the error term $R_{n,x_0}(x, \xi)$ by using the fact that ξ is from the same domain as x (as ξ is always in between x and x_0). By bounding the terms $f^{(n+1)}(\xi)$ and $(x - x_0)^{n+1}$, one may obtain a bound for the whole error term. This step highly depends on $f^{(n+1)}(\xi)$.

We want to find a bound for $R_{3,0}(x,\xi)$ and $x\in [-1,1],$ i.e. we want to find a constant C such that

$$\left|\mathsf{R}_{3,0}(\mathsf{x},\xi)\right|\leq \mathsf{C}.$$

Using the rules for the absolute value (in particular the triangle inequality $|a+b| \ge |a| + |b|$) and the fact, that $\xi \in [-1, 1]$, we obtain

$$R_{3,0}(x,\xi) = \left| \frac{12\xi e^{\xi^2} + 8\xi^2 e^{\xi^2}}{6} x^3 \right|$$

$$\leq \frac{12|\xi| |e^{\xi^2}| + 8|\xi|^2 |e^{\xi^2}|}{6} |x^3|$$

$$\leq \frac{12 \cdot 1 \cdot e^1 + 8 \cdot 1 \cdot e^1}{6} \cdot 1$$

$$= \frac{10}{3} \underbrace{e^1}_{\leq 3} \leq 10.$$

Hence, the error when using $T_{2,0}$ instead of f for $x \in [-1, 1]$ is at most 10.